'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: We have computed the following set of weak (innermost) dependency pairs: { a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1)))))))) , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1)))))))))) , p^#(p(s(x1))) -> c_3(p^#(x1)) , p^#(s(x1)) -> c_4()} The usable rules are: { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} The estimated dependency graph contains the following edges: {a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))} ==> {p^#(s(x1)) -> c_4()} {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))} ==> {p^#(p(s(x1))) -> c_3(p^#(x1))} {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))} ==> {p^#(s(x1)) -> c_4()} {c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))} ==> {p^#(s(x1)) -> c_4()} {p^#(p(s(x1))) -> c_3(p^#(x1))} ==> {p^#(s(x1)) -> c_4()} {p^#(p(s(x1))) -> c_3(p^#(x1))} ==> {p^#(p(s(x1))) -> c_3(p^#(x1))} We consider the following path(s): 1) { b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , p^#(p(s(x1))) -> c_3(p^#(x1)) , p^#(s(x1)) -> c_4()} The usable rules for this path are the following: { c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , p^#(p(s(x1))) -> c_3(p^#(x1)) , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , p^#(s(x1)) -> c_4()} Details: We apply the weight gap principle, strictly orienting the rules { c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p^#(s(x1)) -> c_4()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p^#(s(x1)) -> c_4()} Details: Interpretation Functions: a(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} and weakly orienting the rules { c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p^#(s(x1)) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [5] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))} and weakly orienting the rules { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p^#(s(x1)) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [4] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [8] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [3] b^#(x1) = [1] x1 + [13] c_1(x1) = [1] x1 + [1] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p^#(s(x1)) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [8] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [12] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [15] c_1(x1) = [1] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(p(s(x1))) -> c_3(p^#(x1))} and weakly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p^#(s(x1)) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(p(s(x1))) -> c_3(p^#(x1))} Details: Interpretation Functions: a(x1) = [1] x1 + [4] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [8] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [3] b^#(x1) = [1] x1 + [15] c_1(x1) = [1] x1 + [1] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} Weak Rules: { p^#(p(s(x1))) -> c_3(p^#(x1)) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p^#(s(x1)) -> c_4()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} Weak Rules: { p^#(p(s(x1))) -> c_3(p^#(x1)) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p^#(s(x1)) -> c_4()} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a_0(8) -> 7 , a_0(8) -> 13 , a_0(8) -> 15 , a_1(29) -> 7 , a_1(29) -> 24 , a_1(29) -> 28 , a_1(29) -> 43 , a_1(29) -> 45 , s_0(2) -> 2 , s_0(2) -> 8 , s_0(2) -> 10 , s_0(2) -> 21 , s_0(2) -> 29 , s_0(2) -> 31 , s_0(2) -> 39 , s_0(6) -> 5 , s_0(7) -> 4 , s_0(7) -> 6 , s_0(10) -> 9 , s_0(13) -> 12 , s_0(15) -> 14 , s_0(16) -> 7 , s_0(16) -> 13 , s_0(16) -> 15 , s_0(17) -> 16 , s_0(18) -> 17 , s_0(20) -> 19 , s_1(2) -> 32 , s_1(2) -> 40 , s_1(22) -> 18 , s_1(22) -> 20 , s_1(22) -> 36 , s_1(22) -> 38 , s_1(23) -> 22 , s_1(24) -> 23 , s_1(27) -> 26 , s_1(28) -> 25 , s_1(28) -> 27 , s_1(31) -> 30 , s_1(32) -> 41 , s_1(34) -> 7 , s_1(34) -> 13 , s_1(34) -> 15 , s_1(34) -> 24 , s_1(34) -> 28 , s_1(34) -> 43 , s_1(34) -> 45 , s_1(35) -> 34 , s_1(36) -> 35 , s_1(38) -> 37 , s_1(43) -> 42 , s_1(45) -> 44 , p_0(2) -> 8 , p_0(2) -> 10 , p_0(2) -> 21 , p_0(5) -> 4 , p_0(9) -> 8 , p_0(10) -> 21 , p_0(12) -> 7 , p_0(14) -> 7 , p_0(14) -> 13 , p_0(19) -> 18 , p_1(25) -> 24 , p_1(26) -> 25 , p_1(27) -> 24 , p_1(30) -> 29 , p_1(32) -> 29 , p_1(32) -> 31 , p_1(32) -> 39 , p_1(37) -> 36 , p_1(40) -> 39 , p_1(41) -> 40 , p_1(42) -> 7 , p_1(42) -> 24 , p_1(42) -> 28 , p_1(44) -> 7 , p_1(44) -> 24 , p_1(44) -> 28 , p_1(44) -> 43 , b_0(21) -> 18 , b_0(21) -> 20 , b_1(39) -> 36 , b_1(39) -> 38 , c_0(8) -> 7 , c_1(29) -> 24 , c_1(29) -> 28 , p^#_0(2) -> 1 , p^#_0(4) -> 3 , p^#_0(6) -> 11 , p^#_1(25) -> 33 , p^#_1(27) -> 46 , b^#_0(2) -> 1 , c_1_0(3) -> 1 , c_1_1(33) -> 1 , c_3_0(11) -> 3 , c_3_1(46) -> 33 , c_4_0() -> 1 , c_4_0() -> 3 , c_4_0() -> 11 , c_4_1() -> 33 , c_4_1() -> 46} 2) { b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , p^#(s(x1)) -> c_4()} The usable rules for this path are the following: { c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , p^#(s(x1)) -> c_4()} Details: We apply the weight gap principle, strictly orienting the rules {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} and weakly orienting the rules {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [5] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(s(x1)) -> c_4()} and weakly orienting the rules { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(s(x1)) -> c_4()} Details: Interpretation Functions: a(x1) = [1] x1 + [2] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [2] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [8] b^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))} and weakly orienting the rules { p^#(s(x1)) -> c_4() , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [2] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [3] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , p^#(s(x1)) -> c_4() , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [7] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] b(x1) = [1] x1 + [4] c(x1) = [1] x1 + [12] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [15] c_1(x1) = [1] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , p^#(s(x1)) -> c_4() , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , p^#(s(x1)) -> c_4() , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a_0(15) -> 14 , a_0(15) -> 19 , a_0(15) -> 21 , a_1(35) -> 14 , a_1(35) -> 30 , a_1(35) -> 34 , a_1(35) -> 49 , a_1(35) -> 51 , s_0(2) -> 2 , s_0(2) -> 15 , s_0(2) -> 17 , s_0(2) -> 27 , s_0(2) -> 35 , s_0(2) -> 37 , s_0(2) -> 45 , s_0(13) -> 12 , s_0(14) -> 11 , s_0(14) -> 13 , s_0(17) -> 16 , s_0(19) -> 18 , s_0(21) -> 20 , s_0(22) -> 14 , s_0(22) -> 19 , s_0(22) -> 21 , s_0(23) -> 22 , s_0(24) -> 23 , s_0(26) -> 25 , s_1(2) -> 38 , s_1(2) -> 46 , s_1(28) -> 24 , s_1(28) -> 26 , s_1(28) -> 42 , s_1(28) -> 44 , s_1(29) -> 28 , s_1(30) -> 29 , s_1(33) -> 32 , s_1(34) -> 31 , s_1(34) -> 33 , s_1(37) -> 36 , s_1(38) -> 47 , s_1(40) -> 14 , s_1(40) -> 19 , s_1(40) -> 21 , s_1(40) -> 30 , s_1(40) -> 34 , s_1(40) -> 49 , s_1(40) -> 51 , s_1(41) -> 40 , s_1(42) -> 41 , s_1(44) -> 43 , s_1(49) -> 48 , s_1(51) -> 50 , p_0(2) -> 15 , p_0(2) -> 17 , p_0(2) -> 27 , p_0(12) -> 11 , p_0(16) -> 15 , p_0(17) -> 27 , p_0(18) -> 14 , p_0(20) -> 14 , p_0(20) -> 19 , p_0(25) -> 24 , p_1(31) -> 30 , p_1(32) -> 31 , p_1(33) -> 30 , p_1(36) -> 35 , p_1(38) -> 35 , p_1(38) -> 37 , p_1(38) -> 45 , p_1(43) -> 42 , p_1(46) -> 45 , p_1(47) -> 46 , p_1(48) -> 14 , p_1(48) -> 30 , p_1(48) -> 34 , p_1(50) -> 14 , p_1(50) -> 30 , p_1(50) -> 34 , p_1(50) -> 49 , b_0(27) -> 24 , b_0(27) -> 26 , b_1(45) -> 42 , b_1(45) -> 44 , c_0(15) -> 14 , c_1(35) -> 30 , c_1(35) -> 34 , p^#_0(2) -> 8 , p^#_0(11) -> 10 , p^#_1(31) -> 39 , b^#_0(2) -> 9 , c_1_0(10) -> 9 , c_1_1(39) -> 9 , c_4_0() -> 8 , c_4_0() -> 10 , c_4_1() -> 39} 3) { b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , p^#(p(s(x1))) -> c_3(p^#(x1))} The usable rules for this path are the following: { c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , p^#(p(s(x1))) -> c_3(p^#(x1))} Details: We apply the weight gap principle, strictly orienting the rules {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} and weakly orienting the rules {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [8] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))} and weakly orienting the rules { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [2] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [8] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [3] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [11] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [15] c_1(x1) = [1] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [8] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {p^#(p(s(x1))) -> c_3(p^#(x1))} and weakly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {p^#(p(s(x1))) -> c_3(p^#(x1))} Details: Interpretation Functions: a(x1) = [1] x1 + [6] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [10] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [15] c_1(x1) = [1] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} Weak Rules: { p^#(p(s(x1))) -> c_3(p^#(x1)) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} Weak Rules: { p^#(p(s(x1))) -> c_3(p^#(x1)) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a_0(15) -> 14 , a_0(15) -> 20 , a_0(15) -> 22 , a_1(36) -> 14 , a_1(36) -> 31 , a_1(36) -> 35 , a_1(36) -> 50 , a_1(36) -> 52 , s_0(2) -> 2 , s_0(2) -> 15 , s_0(2) -> 17 , s_0(2) -> 28 , s_0(2) -> 36 , s_0(2) -> 38 , s_0(2) -> 46 , s_0(13) -> 12 , s_0(14) -> 11 , s_0(14) -> 13 , s_0(17) -> 16 , s_0(20) -> 19 , s_0(22) -> 21 , s_0(23) -> 14 , s_0(23) -> 20 , s_0(23) -> 22 , s_0(24) -> 23 , s_0(25) -> 24 , s_0(27) -> 26 , s_1(2) -> 39 , s_1(2) -> 47 , s_1(29) -> 25 , s_1(29) -> 27 , s_1(29) -> 43 , s_1(29) -> 45 , s_1(30) -> 29 , s_1(31) -> 30 , s_1(34) -> 33 , s_1(35) -> 32 , s_1(35) -> 34 , s_1(38) -> 37 , s_1(39) -> 48 , s_1(41) -> 14 , s_1(41) -> 20 , s_1(41) -> 22 , s_1(41) -> 31 , s_1(41) -> 35 , s_1(41) -> 50 , s_1(41) -> 52 , s_1(42) -> 41 , s_1(43) -> 42 , s_1(45) -> 44 , s_1(50) -> 49 , s_1(52) -> 51 , p_0(2) -> 15 , p_0(2) -> 17 , p_0(2) -> 28 , p_0(12) -> 11 , p_0(16) -> 15 , p_0(17) -> 28 , p_0(19) -> 14 , p_0(21) -> 14 , p_0(21) -> 20 , p_0(26) -> 25 , p_1(32) -> 31 , p_1(33) -> 32 , p_1(34) -> 31 , p_1(37) -> 36 , p_1(39) -> 36 , p_1(39) -> 38 , p_1(39) -> 46 , p_1(44) -> 43 , p_1(47) -> 46 , p_1(48) -> 47 , p_1(49) -> 14 , p_1(49) -> 31 , p_1(49) -> 35 , p_1(51) -> 14 , p_1(51) -> 31 , p_1(51) -> 35 , p_1(51) -> 50 , b_0(28) -> 25 , b_0(28) -> 27 , b_1(46) -> 43 , b_1(46) -> 45 , c_0(15) -> 14 , c_1(36) -> 31 , c_1(36) -> 35 , p^#_0(2) -> 8 , p^#_0(11) -> 10 , p^#_0(13) -> 18 , p^#_1(32) -> 40 , p^#_1(34) -> 53 , b^#_0(2) -> 9 , c_1_0(10) -> 9 , c_1_1(40) -> 9 , c_3_0(18) -> 10 , c_3_1(53) -> 40} 4) { c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1)))))))))) , p^#(s(x1)) -> c_4()} The usable rules for this path are the following: { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1)))))))))) , p^#(s(x1)) -> c_4()} Details: We apply the weight gap principle, strictly orienting the rules {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_4()} and weakly orienting the rules {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_4()} Details: Interpretation Functions: a(x1) = [1] x1 + [8] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [4] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))} and weakly orienting the rules { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_4() , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [8] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [8] c(x1) = [1] x1 + [1] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_4() , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [12] s(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [6] c(x1) = [1] x1 + [0] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [15] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_4() , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , p^#(s(x1)) -> c_4() , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a_0(17) -> 14 , a_0(17) -> 16 , a_1(37) -> 28 , a_1(37) -> 32 , a_1(37) -> 34 , a_1(37) -> 36 , a_1(37) -> 44 , a_1(37) -> 48 , s_0(2) -> 2 , s_0(2) -> 17 , s_0(2) -> 19 , s_0(2) -> 25 , s_0(2) -> 37 , s_0(2) -> 39 , s_0(2) -> 54 , s_0(14) -> 13 , s_0(16) -> 15 , s_0(19) -> 18 , s_0(20) -> 14 , s_0(20) -> 16 , s_0(21) -> 20 , s_0(22) -> 21 , s_0(24) -> 23 , s_0(26) -> 22 , s_0(26) -> 24 , s_0(27) -> 26 , s_0(28) -> 27 , s_0(31) -> 30 , s_0(32) -> 29 , s_0(32) -> 31 , s_1(2) -> 40 , s_1(2) -> 55 , s_1(34) -> 33 , s_1(36) -> 35 , s_1(39) -> 38 , s_1(40) -> 56 , s_1(42) -> 22 , s_1(42) -> 24 , s_1(42) -> 51 , s_1(42) -> 53 , s_1(43) -> 42 , s_1(44) -> 43 , s_1(47) -> 46 , s_1(48) -> 45 , s_1(48) -> 47 , s_1(49) -> 14 , s_1(49) -> 16 , s_1(49) -> 28 , s_1(49) -> 32 , s_1(49) -> 34 , s_1(49) -> 36 , s_1(49) -> 44 , s_1(49) -> 48 , s_1(50) -> 49 , s_1(51) -> 50 , s_1(53) -> 52 , p_0(2) -> 17 , p_0(2) -> 19 , p_0(2) -> 25 , p_0(15) -> 14 , p_0(18) -> 17 , p_0(19) -> 25 , p_0(23) -> 22 , p_0(29) -> 28 , p_0(30) -> 29 , p_0(31) -> 28 , p_1(33) -> 28 , p_1(33) -> 32 , p_1(33) -> 44 , p_1(33) -> 48 , p_1(35) -> 28 , p_1(35) -> 32 , p_1(35) -> 34 , p_1(35) -> 44 , p_1(35) -> 48 , p_1(38) -> 37 , p_1(40) -> 37 , p_1(40) -> 39 , p_1(40) -> 54 , p_1(45) -> 44 , p_1(46) -> 45 , p_1(47) -> 44 , p_1(52) -> 51 , p_1(55) -> 54 , p_1(56) -> 55 , b_0(25) -> 22 , b_0(25) -> 24 , b_1(54) -> 51 , b_1(54) -> 53 , c_0(17) -> 28 , c_0(17) -> 32 , c_1(37) -> 44 , c_1(37) -> 48 , p^#_0(2) -> 8 , p^#_0(13) -> 12 , p^#_1(33) -> 41 , c^#_0(2) -> 11 , c_2_0(12) -> 11 , c_2_1(41) -> 11 , c_4_0() -> 8 , c_4_0() -> 12 , c_4_1() -> 41} 5) {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))} The usable rules for this path are the following: { c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))} Details: We apply the weight gap principle, strictly orienting the rules {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [8] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} and weakly orienting the rules {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [8] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))} and weakly orienting the rules { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [7] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [8] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [3] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [8] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [2] b^#(x1) = [1] x1 + [13] c_1(x1) = [1] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a_0(15) -> 14 , a_0(15) -> 19 , a_0(15) -> 21 , a_1(35) -> 14 , a_1(35) -> 30 , a_1(35) -> 34 , a_1(35) -> 49 , a_1(35) -> 51 , s_0(2) -> 2 , s_0(2) -> 15 , s_0(2) -> 17 , s_0(2) -> 27 , s_0(2) -> 35 , s_0(2) -> 37 , s_0(2) -> 45 , s_0(13) -> 12 , s_0(14) -> 11 , s_0(14) -> 13 , s_0(17) -> 16 , s_0(19) -> 18 , s_0(21) -> 20 , s_0(22) -> 14 , s_0(22) -> 19 , s_0(22) -> 21 , s_0(23) -> 22 , s_0(24) -> 23 , s_0(26) -> 25 , s_1(2) -> 38 , s_1(2) -> 46 , s_1(28) -> 24 , s_1(28) -> 26 , s_1(28) -> 42 , s_1(28) -> 44 , s_1(29) -> 28 , s_1(30) -> 29 , s_1(33) -> 32 , s_1(34) -> 31 , s_1(34) -> 33 , s_1(37) -> 36 , s_1(38) -> 47 , s_1(40) -> 14 , s_1(40) -> 19 , s_1(40) -> 21 , s_1(40) -> 30 , s_1(40) -> 34 , s_1(40) -> 49 , s_1(40) -> 51 , s_1(41) -> 40 , s_1(42) -> 41 , s_1(44) -> 43 , s_1(49) -> 48 , s_1(51) -> 50 , p_0(2) -> 15 , p_0(2) -> 17 , p_0(2) -> 27 , p_0(12) -> 11 , p_0(16) -> 15 , p_0(17) -> 27 , p_0(18) -> 14 , p_0(20) -> 14 , p_0(20) -> 19 , p_0(25) -> 24 , p_1(31) -> 30 , p_1(32) -> 31 , p_1(33) -> 30 , p_1(36) -> 35 , p_1(38) -> 35 , p_1(38) -> 37 , p_1(38) -> 45 , p_1(43) -> 42 , p_1(46) -> 45 , p_1(47) -> 46 , p_1(48) -> 14 , p_1(48) -> 30 , p_1(48) -> 34 , p_1(50) -> 14 , p_1(50) -> 30 , p_1(50) -> 34 , p_1(50) -> 49 , b_0(27) -> 24 , b_0(27) -> 26 , b_1(45) -> 42 , b_1(45) -> 44 , c_0(15) -> 14 , c_1(35) -> 30 , c_1(35) -> 34 , p^#_0(2) -> 8 , p^#_0(11) -> 10 , p^#_1(31) -> 39 , b^#_0(2) -> 9 , c_1_0(10) -> 9 , c_1_1(39) -> 9} 6) {c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))} The usable rules for this path are the following: { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))} Details: We apply the weight gap principle, strictly orienting the rules { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [2] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))} and weakly orienting the rules { a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [7] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [8] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [3] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [12] a^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1)))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a_0(17) -> 14 , a_0(17) -> 16 , a_1(33) -> 28 , a_1(33) -> 32 , a_1(33) -> 39 , a_1(33) -> 41 , s_0(2) -> 2 , s_0(2) -> 17 , s_0(2) -> 19 , s_0(2) -> 25 , s_0(2) -> 33 , s_0(2) -> 35 , s_0(2) -> 47 , s_0(14) -> 13 , s_0(16) -> 15 , s_0(19) -> 18 , s_0(20) -> 14 , s_0(20) -> 16 , s_0(21) -> 20 , s_0(22) -> 21 , s_0(24) -> 23 , s_1(2) -> 36 , s_1(2) -> 48 , s_1(26) -> 22 , s_1(26) -> 24 , s_1(26) -> 44 , s_1(26) -> 46 , s_1(27) -> 26 , s_1(28) -> 27 , s_1(31) -> 30 , s_1(32) -> 29 , s_1(32) -> 31 , s_1(35) -> 34 , s_1(36) -> 49 , s_1(39) -> 38 , s_1(41) -> 40 , s_1(42) -> 14 , s_1(42) -> 16 , s_1(42) -> 28 , s_1(42) -> 32 , s_1(42) -> 39 , s_1(42) -> 41 , s_1(43) -> 42 , s_1(44) -> 43 , s_1(46) -> 45 , p_0(2) -> 17 , p_0(2) -> 19 , p_0(2) -> 25 , p_0(15) -> 14 , p_0(18) -> 17 , p_0(19) -> 25 , p_0(23) -> 22 , p_1(29) -> 28 , p_1(30) -> 29 , p_1(31) -> 28 , p_1(34) -> 33 , p_1(36) -> 33 , p_1(36) -> 35 , p_1(36) -> 47 , p_1(38) -> 28 , p_1(38) -> 32 , p_1(40) -> 28 , p_1(40) -> 32 , p_1(40) -> 39 , p_1(45) -> 44 , p_1(48) -> 47 , p_1(49) -> 48 , b_0(25) -> 22 , b_0(25) -> 24 , b_1(47) -> 44 , b_1(47) -> 46 , c_1(33) -> 28 , c_1(33) -> 32 , p^#_0(2) -> 8 , p^#_0(13) -> 12 , p^#_1(38) -> 37 , c^#_0(2) -> 11 , c_2_0(12) -> 11 , c_2_1(37) -> 11} 7) { a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1)))))))) , p^#(s(x1)) -> c_4()} The usable rules for this path are the following: { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1)))))))) , p^#(s(x1)) -> c_4()} Details: We apply the weight gap principle, strictly orienting the rules { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , p^#(s(x1)) -> c_4()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , p^#(s(x1)) -> c_4()} Details: Interpretation Functions: a(x1) = [1] x1 + [8] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [2] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))} and weakly orienting the rules { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , p^#(s(x1)) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [8] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [3] c(x1) = [1] x1 + [1] a^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1)))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , p^#(s(x1)) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [14] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] b(x1) = [1] x1 + [6] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [12] c_0(x1) = [1] x1 + [1] p^#(x1) = [1] x1 + [0] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1)))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , p^#(s(x1)) -> c_4()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1)))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , p^#(s(x1)) -> c_4()} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a_1(27) -> 16 , a_1(27) -> 20 , a_1(27) -> 24 , a_1(27) -> 26 , a_1(27) -> 39 , a_1(27) -> 43 , s_0(2) -> 2 , s_0(2) -> 12 , s_0(2) -> 13 , s_0(2) -> 21 , s_0(2) -> 27 , s_0(2) -> 29 , s_0(2) -> 34 , s_0(11) -> 10 , s_0(13) -> 22 , s_0(14) -> 11 , s_0(15) -> 14 , s_0(16) -> 15 , s_0(19) -> 18 , s_0(20) -> 17 , s_0(20) -> 19 , s_1(2) -> 30 , s_1(2) -> 35 , s_1(24) -> 23 , s_1(26) -> 25 , s_1(29) -> 28 , s_1(30) -> 36 , s_1(33) -> 32 , s_1(37) -> 11 , s_1(37) -> 33 , s_1(37) -> 46 , s_1(38) -> 37 , s_1(39) -> 38 , s_1(42) -> 41 , s_1(43) -> 40 , s_1(43) -> 42 , s_1(44) -> 16 , s_1(44) -> 20 , s_1(44) -> 24 , s_1(44) -> 26 , s_1(44) -> 39 , s_1(44) -> 43 , s_1(45) -> 44 , s_1(46) -> 45 , p_0(2) -> 12 , p_0(2) -> 13 , p_0(2) -> 21 , p_0(13) -> 12 , p_0(17) -> 16 , p_0(18) -> 17 , p_0(19) -> 16 , p_0(22) -> 21 , p_1(23) -> 16 , p_1(23) -> 20 , p_1(23) -> 39 , p_1(23) -> 43 , p_1(25) -> 16 , p_1(25) -> 20 , p_1(25) -> 24 , p_1(25) -> 39 , p_1(25) -> 43 , p_1(28) -> 27 , p_1(30) -> 27 , p_1(30) -> 29 , p_1(30) -> 34 , p_1(32) -> 46 , p_1(35) -> 34 , p_1(36) -> 35 , p_1(40) -> 39 , p_1(41) -> 40 , p_1(42) -> 39 , b_0(12) -> 11 , b_1(34) -> 33 , b_1(34) -> 46 , c_0(21) -> 16 , c_0(21) -> 20 , c_1(27) -> 39 , c_1(27) -> 43 , a^#_0(2) -> 6 , c_0_0(9) -> 6 , c_0_1(31) -> 6 , p^#_0(2) -> 8 , p^#_0(10) -> 9 , p^#_1(32) -> 31 , c_4_0() -> 8 , c_4_0() -> 9 , c_4_1() -> 31} 8) {a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))} The usable rules for this path are the following: { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1)))))))))) , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))} Details: We apply the weight gap principle, strictly orienting the rules { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] p^#(x1) = [1] x1 + [0] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} and weakly orienting the rules { b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))} Details: Interpretation Functions: a(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] b(x1) = [1] x1 + [8] c(x1) = [1] x1 + [1] a^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [1] p^#(x1) = [1] x1 + [0] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} and weakly orienting the rules { c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] b(x1) = [1] x1 + [10] c(x1) = [1] x1 + [6] a^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [1] p^#(x1) = [1] x1 + [2] b^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))} Weak Rules: { p(p(s(x1))) -> p(x1) , p(s(x1)) -> x1 , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1))))))))) , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1)))))))))))) , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a_0(21) -> 16 , a_0(21) -> 20 , a_0(21) -> 24 , a_1(38) -> 16 , a_1(38) -> 20 , a_1(38) -> 35 , a_1(38) -> 37 , a_1(38) -> 42 , a_1(38) -> 46 , s_0(2) -> 2 , s_0(2) -> 12 , s_0(2) -> 13 , s_0(2) -> 21 , s_0(2) -> 30 , s_0(2) -> 38 , s_0(11) -> 10 , s_0(13) -> 22 , s_0(14) -> 11 , s_0(15) -> 14 , s_0(16) -> 15 , s_0(19) -> 18 , s_0(20) -> 17 , s_0(20) -> 19 , s_0(24) -> 23 , s_1(2) -> 31 , s_1(2) -> 33 , s_1(25) -> 16 , s_1(25) -> 20 , s_1(25) -> 24 , s_1(25) -> 35 , s_1(25) -> 37 , s_1(25) -> 42 , s_1(25) -> 46 , s_1(26) -> 25 , s_1(27) -> 26 , s_1(29) -> 28 , s_1(30) -> 39 , s_1(33) -> 32 , s_1(35) -> 34 , s_1(37) -> 36 , s_1(40) -> 11 , s_1(40) -> 27 , s_1(40) -> 29 , s_1(41) -> 40 , s_1(42) -> 41 , s_1(45) -> 44 , s_1(46) -> 43 , s_1(46) -> 45 , p_0(2) -> 12 , p_0(2) -> 13 , p_0(2) -> 21 , p_0(13) -> 12 , p_0(17) -> 16 , p_0(18) -> 17 , p_0(19) -> 16 , p_0(19) -> 20 , p_0(22) -> 21 , p_0(23) -> 16 , p_0(23) -> 20 , p_1(28) -> 27 , p_1(31) -> 30 , p_1(31) -> 38 , p_1(32) -> 31 , p_1(33) -> 30 , p_1(33) -> 38 , p_1(34) -> 16 , p_1(34) -> 20 , p_1(34) -> 42 , p_1(34) -> 46 , p_1(36) -> 16 , p_1(36) -> 20 , p_1(36) -> 35 , p_1(36) -> 42 , p_1(36) -> 46 , p_1(39) -> 38 , p_1(41) -> 42 , p_1(41) -> 46 , p_1(43) -> 42 , p_1(43) -> 46 , p_1(44) -> 43 , p_1(45) -> 42 , p_1(45) -> 46 , b_0(12) -> 11 , b_1(30) -> 27 , b_1(30) -> 29 , c_0(21) -> 16 , c_0(21) -> 20 , c_1(38) -> 42 , c_1(38) -> 46 , a^#_0(2) -> 6 , c_0_0(9) -> 6 , c_0_1(47) -> 6 , p^#_0(2) -> 8 , p^#_0(10) -> 9 , p^#_1(28) -> 47}