'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
     , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
     , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
     , p(p(s(x1))) -> p(x1)
     , p(s(x1)) -> x1}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))
    , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
    , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))
    , p^#(p(s(x1))) -> c_3(p^#(x1))
    , p^#(s(x1)) -> c_4()}
  
  The usable rules are:
   {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
    , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
    , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
    , p(p(s(x1))) -> p(x1)
    , p(s(x1)) -> x1}
  
  The estimated dependency graph contains the following edges:
   {a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))}
     ==> {p^#(s(x1)) -> c_4()}
   {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))}
     ==> {p^#(p(s(x1))) -> c_3(p^#(x1))}
   {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))}
     ==> {p^#(s(x1)) -> c_4()}
   {c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))}
     ==> {p^#(s(x1)) -> c_4()}
   {p^#(p(s(x1))) -> c_3(p^#(x1))}
     ==> {p^#(s(x1)) -> c_4()}
   {p^#(p(s(x1))) -> c_3(p^#(x1))}
     ==> {p^#(p(s(x1))) -> c_3(p^#(x1))}
  
  We consider the following path(s):
   1) {  b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
       , p^#(p(s(x1))) -> c_3(p^#(x1))
       , p^#(s(x1)) -> c_4()}
      
      The usable rules for this path are the following:
      {  c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
       , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
               , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
               , p^#(p(s(x1))) -> c_3(p^#(x1))
               , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
               , p^#(s(x1)) -> c_4()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
             , p^#(s(x1)) -> c_4()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
               , p^#(s(x1)) -> c_4()}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
            and weakly orienting the rules
            {  c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
             , p^#(s(x1)) -> c_4()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [5]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
             , p^#(s(x1)) -> c_4()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [4]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [3]
                  b^#(x1) = [1] x1 + [13]
                  c_1(x1) = [1] x1 + [1]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
             , p^#(s(x1)) -> c_4()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [8]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [12]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [15]
                  c_1(x1) = [1] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(p(s(x1))) -> c_3(p^#(x1))}
            and weakly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
             , p^#(s(x1)) -> c_4()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(p(s(x1))) -> c_3(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [4]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [3]
                  b^#(x1) = [1] x1 + [15]
                  c_1(x1) = [1] x1 + [1]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
              Weak Rules:
                {  p^#(p(s(x1))) -> c_3(p^#(x1))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
                 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
                 , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
                 , p^#(s(x1)) -> c_4()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
                Weak Rules:
                  {  p^#(p(s(x1))) -> c_3(p^#(x1))
                   , p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
                   , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
                   , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
                   , p^#(s(x1)) -> c_4()}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a_0(8) -> 7
                 , a_0(8) -> 13
                 , a_0(8) -> 15
                 , a_1(29) -> 7
                 , a_1(29) -> 24
                 , a_1(29) -> 28
                 , a_1(29) -> 43
                 , a_1(29) -> 45
                 , s_0(2) -> 2
                 , s_0(2) -> 8
                 , s_0(2) -> 10
                 , s_0(2) -> 21
                 , s_0(2) -> 29
                 , s_0(2) -> 31
                 , s_0(2) -> 39
                 , s_0(6) -> 5
                 , s_0(7) -> 4
                 , s_0(7) -> 6
                 , s_0(10) -> 9
                 , s_0(13) -> 12
                 , s_0(15) -> 14
                 , s_0(16) -> 7
                 , s_0(16) -> 13
                 , s_0(16) -> 15
                 , s_0(17) -> 16
                 , s_0(18) -> 17
                 , s_0(20) -> 19
                 , s_1(2) -> 32
                 , s_1(2) -> 40
                 , s_1(22) -> 18
                 , s_1(22) -> 20
                 , s_1(22) -> 36
                 , s_1(22) -> 38
                 , s_1(23) -> 22
                 , s_1(24) -> 23
                 , s_1(27) -> 26
                 , s_1(28) -> 25
                 , s_1(28) -> 27
                 , s_1(31) -> 30
                 , s_1(32) -> 41
                 , s_1(34) -> 7
                 , s_1(34) -> 13
                 , s_1(34) -> 15
                 , s_1(34) -> 24
                 , s_1(34) -> 28
                 , s_1(34) -> 43
                 , s_1(34) -> 45
                 , s_1(35) -> 34
                 , s_1(36) -> 35
                 , s_1(38) -> 37
                 , s_1(43) -> 42
                 , s_1(45) -> 44
                 , p_0(2) -> 8
                 , p_0(2) -> 10
                 , p_0(2) -> 21
                 , p_0(5) -> 4
                 , p_0(9) -> 8
                 , p_0(10) -> 21
                 , p_0(12) -> 7
                 , p_0(14) -> 7
                 , p_0(14) -> 13
                 , p_0(19) -> 18
                 , p_1(25) -> 24
                 , p_1(26) -> 25
                 , p_1(27) -> 24
                 , p_1(30) -> 29
                 , p_1(32) -> 29
                 , p_1(32) -> 31
                 , p_1(32) -> 39
                 , p_1(37) -> 36
                 , p_1(40) -> 39
                 , p_1(41) -> 40
                 , p_1(42) -> 7
                 , p_1(42) -> 24
                 , p_1(42) -> 28
                 , p_1(44) -> 7
                 , p_1(44) -> 24
                 , p_1(44) -> 28
                 , p_1(44) -> 43
                 , b_0(21) -> 18
                 , b_0(21) -> 20
                 , b_1(39) -> 36
                 , b_1(39) -> 38
                 , c_0(8) -> 7
                 , c_1(29) -> 24
                 , c_1(29) -> 28
                 , p^#_0(2) -> 1
                 , p^#_0(4) -> 3
                 , p^#_0(6) -> 11
                 , p^#_1(25) -> 33
                 , p^#_1(27) -> 46
                 , b^#_0(2) -> 1
                 , c_1_0(3) -> 1
                 , c_1_1(33) -> 1
                 , c_3_0(11) -> 3
                 , c_3_1(46) -> 33
                 , c_4_0() -> 1
                 , c_4_0() -> 3
                 , c_4_0() -> 11
                 , c_4_1() -> 33
                 , c_4_1() -> 46}
      
   2) {  b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
       , p^#(s(x1)) -> c_4()}
      
      The usable rules for this path are the following:
      {  c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
       , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
               , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
               , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
               , p^#(s(x1)) -> c_4()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
            and weakly orienting the rules
            {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [5]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(x1)) -> c_4()}
            and weakly orienting the rules
            {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(x1)) -> c_4()}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [2]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [2]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [8]
                  b^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {  p^#(s(x1)) -> c_4()
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [2]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [3]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
             , p^#(s(x1)) -> c_4()
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [7]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [4]
                  c(x1) = [1] x1 + [12]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [15]
                  c_1(x1) = [1] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
                 , p^#(s(x1)) -> c_4()
                 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
                 , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
                   , p^#(s(x1)) -> c_4()
                   , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
                   , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a_0(15) -> 14
                 , a_0(15) -> 19
                 , a_0(15) -> 21
                 , a_1(35) -> 14
                 , a_1(35) -> 30
                 , a_1(35) -> 34
                 , a_1(35) -> 49
                 , a_1(35) -> 51
                 , s_0(2) -> 2
                 , s_0(2) -> 15
                 , s_0(2) -> 17
                 , s_0(2) -> 27
                 , s_0(2) -> 35
                 , s_0(2) -> 37
                 , s_0(2) -> 45
                 , s_0(13) -> 12
                 , s_0(14) -> 11
                 , s_0(14) -> 13
                 , s_0(17) -> 16
                 , s_0(19) -> 18
                 , s_0(21) -> 20
                 , s_0(22) -> 14
                 , s_0(22) -> 19
                 , s_0(22) -> 21
                 , s_0(23) -> 22
                 , s_0(24) -> 23
                 , s_0(26) -> 25
                 , s_1(2) -> 38
                 , s_1(2) -> 46
                 , s_1(28) -> 24
                 , s_1(28) -> 26
                 , s_1(28) -> 42
                 , s_1(28) -> 44
                 , s_1(29) -> 28
                 , s_1(30) -> 29
                 , s_1(33) -> 32
                 , s_1(34) -> 31
                 , s_1(34) -> 33
                 , s_1(37) -> 36
                 , s_1(38) -> 47
                 , s_1(40) -> 14
                 , s_1(40) -> 19
                 , s_1(40) -> 21
                 , s_1(40) -> 30
                 , s_1(40) -> 34
                 , s_1(40) -> 49
                 , s_1(40) -> 51
                 , s_1(41) -> 40
                 , s_1(42) -> 41
                 , s_1(44) -> 43
                 , s_1(49) -> 48
                 , s_1(51) -> 50
                 , p_0(2) -> 15
                 , p_0(2) -> 17
                 , p_0(2) -> 27
                 , p_0(12) -> 11
                 , p_0(16) -> 15
                 , p_0(17) -> 27
                 , p_0(18) -> 14
                 , p_0(20) -> 14
                 , p_0(20) -> 19
                 , p_0(25) -> 24
                 , p_1(31) -> 30
                 , p_1(32) -> 31
                 , p_1(33) -> 30
                 , p_1(36) -> 35
                 , p_1(38) -> 35
                 , p_1(38) -> 37
                 , p_1(38) -> 45
                 , p_1(43) -> 42
                 , p_1(46) -> 45
                 , p_1(47) -> 46
                 , p_1(48) -> 14
                 , p_1(48) -> 30
                 , p_1(48) -> 34
                 , p_1(50) -> 14
                 , p_1(50) -> 30
                 , p_1(50) -> 34
                 , p_1(50) -> 49
                 , b_0(27) -> 24
                 , b_0(27) -> 26
                 , b_1(45) -> 42
                 , b_1(45) -> 44
                 , c_0(15) -> 14
                 , c_1(35) -> 30
                 , c_1(35) -> 34
                 , p^#_0(2) -> 8
                 , p^#_0(11) -> 10
                 , p^#_1(31) -> 39
                 , b^#_0(2) -> 9
                 , c_1_0(10) -> 9
                 , c_1_1(39) -> 9
                 , c_4_0() -> 8
                 , c_4_0() -> 10
                 , c_4_1() -> 39}
      
   3) {  b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
       , p^#(p(s(x1))) -> c_3(p^#(x1))}
      
      The usable rules for this path are the following:
      {  c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
       , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
               , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
               , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
               , p^#(p(s(x1))) -> c_3(p^#(x1))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
            and weakly orienting the rules
            {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [2]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [3]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [11]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [15]
                  c_1(x1) = [1] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [8]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p^#(p(s(x1))) -> c_3(p^#(x1))}
            and weakly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1
             , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(p(s(x1))) -> c_3(p^#(x1))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [6]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [10]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [15]
                  c_1(x1) = [1] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
              Weak Rules:
                {  p^#(p(s(x1))) -> c_3(p^#(x1))
                 , p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
                 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
                 , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
                Weak Rules:
                  {  p^#(p(s(x1))) -> c_3(p^#(x1))
                   , p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
                   , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
                   , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a_0(15) -> 14
                 , a_0(15) -> 20
                 , a_0(15) -> 22
                 , a_1(36) -> 14
                 , a_1(36) -> 31
                 , a_1(36) -> 35
                 , a_1(36) -> 50
                 , a_1(36) -> 52
                 , s_0(2) -> 2
                 , s_0(2) -> 15
                 , s_0(2) -> 17
                 , s_0(2) -> 28
                 , s_0(2) -> 36
                 , s_0(2) -> 38
                 , s_0(2) -> 46
                 , s_0(13) -> 12
                 , s_0(14) -> 11
                 , s_0(14) -> 13
                 , s_0(17) -> 16
                 , s_0(20) -> 19
                 , s_0(22) -> 21
                 , s_0(23) -> 14
                 , s_0(23) -> 20
                 , s_0(23) -> 22
                 , s_0(24) -> 23
                 , s_0(25) -> 24
                 , s_0(27) -> 26
                 , s_1(2) -> 39
                 , s_1(2) -> 47
                 , s_1(29) -> 25
                 , s_1(29) -> 27
                 , s_1(29) -> 43
                 , s_1(29) -> 45
                 , s_1(30) -> 29
                 , s_1(31) -> 30
                 , s_1(34) -> 33
                 , s_1(35) -> 32
                 , s_1(35) -> 34
                 , s_1(38) -> 37
                 , s_1(39) -> 48
                 , s_1(41) -> 14
                 , s_1(41) -> 20
                 , s_1(41) -> 22
                 , s_1(41) -> 31
                 , s_1(41) -> 35
                 , s_1(41) -> 50
                 , s_1(41) -> 52
                 , s_1(42) -> 41
                 , s_1(43) -> 42
                 , s_1(45) -> 44
                 , s_1(50) -> 49
                 , s_1(52) -> 51
                 , p_0(2) -> 15
                 , p_0(2) -> 17
                 , p_0(2) -> 28
                 , p_0(12) -> 11
                 , p_0(16) -> 15
                 , p_0(17) -> 28
                 , p_0(19) -> 14
                 , p_0(21) -> 14
                 , p_0(21) -> 20
                 , p_0(26) -> 25
                 , p_1(32) -> 31
                 , p_1(33) -> 32
                 , p_1(34) -> 31
                 , p_1(37) -> 36
                 , p_1(39) -> 36
                 , p_1(39) -> 38
                 , p_1(39) -> 46
                 , p_1(44) -> 43
                 , p_1(47) -> 46
                 , p_1(48) -> 47
                 , p_1(49) -> 14
                 , p_1(49) -> 31
                 , p_1(49) -> 35
                 , p_1(51) -> 14
                 , p_1(51) -> 31
                 , p_1(51) -> 35
                 , p_1(51) -> 50
                 , b_0(28) -> 25
                 , b_0(28) -> 27
                 , b_1(46) -> 43
                 , b_1(46) -> 45
                 , c_0(15) -> 14
                 , c_1(36) -> 31
                 , c_1(36) -> 35
                 , p^#_0(2) -> 8
                 , p^#_0(11) -> 10
                 , p^#_0(13) -> 18
                 , p^#_1(32) -> 40
                 , p^#_1(34) -> 53
                 , b^#_0(2) -> 9
                 , c_1_0(10) -> 9
                 , c_1_1(40) -> 9
                 , c_3_0(18) -> 10
                 , c_3_1(53) -> 40}
      
   4) {  c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))
       , p^#(s(x1)) -> c_4()}
      
      The usable rules for this path are the following:
      {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
       , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
               , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
               , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))
               , p^#(s(x1)) -> c_4()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
             , p^#(s(x1)) -> c_4()}
            and weakly orienting the rules
            {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
               , p^#(s(x1)) -> c_4()}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [8]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [4]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
             , p^#(s(x1)) -> c_4()
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [8]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [8]
                  c(x1) = [1] x1 + [1]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))
             , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
             , p^#(s(x1)) -> c_4()
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [12]
                  s(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [6]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [15]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))
                 , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
                 , p^#(s(x1)) -> c_4()
                 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))
                   , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
                   , p^#(s(x1)) -> c_4()
                   , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a_0(17) -> 14
                 , a_0(17) -> 16
                 , a_1(37) -> 28
                 , a_1(37) -> 32
                 , a_1(37) -> 34
                 , a_1(37) -> 36
                 , a_1(37) -> 44
                 , a_1(37) -> 48
                 , s_0(2) -> 2
                 , s_0(2) -> 17
                 , s_0(2) -> 19
                 , s_0(2) -> 25
                 , s_0(2) -> 37
                 , s_0(2) -> 39
                 , s_0(2) -> 54
                 , s_0(14) -> 13
                 , s_0(16) -> 15
                 , s_0(19) -> 18
                 , s_0(20) -> 14
                 , s_0(20) -> 16
                 , s_0(21) -> 20
                 , s_0(22) -> 21
                 , s_0(24) -> 23
                 , s_0(26) -> 22
                 , s_0(26) -> 24
                 , s_0(27) -> 26
                 , s_0(28) -> 27
                 , s_0(31) -> 30
                 , s_0(32) -> 29
                 , s_0(32) -> 31
                 , s_1(2) -> 40
                 , s_1(2) -> 55
                 , s_1(34) -> 33
                 , s_1(36) -> 35
                 , s_1(39) -> 38
                 , s_1(40) -> 56
                 , s_1(42) -> 22
                 , s_1(42) -> 24
                 , s_1(42) -> 51
                 , s_1(42) -> 53
                 , s_1(43) -> 42
                 , s_1(44) -> 43
                 , s_1(47) -> 46
                 , s_1(48) -> 45
                 , s_1(48) -> 47
                 , s_1(49) -> 14
                 , s_1(49) -> 16
                 , s_1(49) -> 28
                 , s_1(49) -> 32
                 , s_1(49) -> 34
                 , s_1(49) -> 36
                 , s_1(49) -> 44
                 , s_1(49) -> 48
                 , s_1(50) -> 49
                 , s_1(51) -> 50
                 , s_1(53) -> 52
                 , p_0(2) -> 17
                 , p_0(2) -> 19
                 , p_0(2) -> 25
                 , p_0(15) -> 14
                 , p_0(18) -> 17
                 , p_0(19) -> 25
                 , p_0(23) -> 22
                 , p_0(29) -> 28
                 , p_0(30) -> 29
                 , p_0(31) -> 28
                 , p_1(33) -> 28
                 , p_1(33) -> 32
                 , p_1(33) -> 44
                 , p_1(33) -> 48
                 , p_1(35) -> 28
                 , p_1(35) -> 32
                 , p_1(35) -> 34
                 , p_1(35) -> 44
                 , p_1(35) -> 48
                 , p_1(38) -> 37
                 , p_1(40) -> 37
                 , p_1(40) -> 39
                 , p_1(40) -> 54
                 , p_1(45) -> 44
                 , p_1(46) -> 45
                 , p_1(47) -> 44
                 , p_1(52) -> 51
                 , p_1(55) -> 54
                 , p_1(56) -> 55
                 , b_0(25) -> 22
                 , b_0(25) -> 24
                 , b_1(54) -> 51
                 , b_1(54) -> 53
                 , c_0(17) -> 28
                 , c_0(17) -> 32
                 , c_1(37) -> 44
                 , c_1(37) -> 48
                 , p^#_0(2) -> 8
                 , p^#_0(13) -> 12
                 , p^#_1(33) -> 41
                 , c^#_0(2) -> 11
                 , c_2_0(12) -> 11
                 , c_2_1(41) -> 11
                 , c_4_0() -> 8
                 , c_4_0() -> 12
                 , c_4_1() -> 41}
      
   5) {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))}
      
      The usable rules for this path are the following:
      {  c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
       , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
               , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
               , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [8]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
            and weakly orienting the rules
            {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [7]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [3]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [2]
                  b^#(x1) = [1] x1 + [13]
                  c_1(x1) = [1] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
                 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
                 , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , b^#(s(x1)) -> c_1(p^#(p(s(s(c(p(s(p(s(x1))))))))))
                   , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
                   , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a_0(15) -> 14
                 , a_0(15) -> 19
                 , a_0(15) -> 21
                 , a_1(35) -> 14
                 , a_1(35) -> 30
                 , a_1(35) -> 34
                 , a_1(35) -> 49
                 , a_1(35) -> 51
                 , s_0(2) -> 2
                 , s_0(2) -> 15
                 , s_0(2) -> 17
                 , s_0(2) -> 27
                 , s_0(2) -> 35
                 , s_0(2) -> 37
                 , s_0(2) -> 45
                 , s_0(13) -> 12
                 , s_0(14) -> 11
                 , s_0(14) -> 13
                 , s_0(17) -> 16
                 , s_0(19) -> 18
                 , s_0(21) -> 20
                 , s_0(22) -> 14
                 , s_0(22) -> 19
                 , s_0(22) -> 21
                 , s_0(23) -> 22
                 , s_0(24) -> 23
                 , s_0(26) -> 25
                 , s_1(2) -> 38
                 , s_1(2) -> 46
                 , s_1(28) -> 24
                 , s_1(28) -> 26
                 , s_1(28) -> 42
                 , s_1(28) -> 44
                 , s_1(29) -> 28
                 , s_1(30) -> 29
                 , s_1(33) -> 32
                 , s_1(34) -> 31
                 , s_1(34) -> 33
                 , s_1(37) -> 36
                 , s_1(38) -> 47
                 , s_1(40) -> 14
                 , s_1(40) -> 19
                 , s_1(40) -> 21
                 , s_1(40) -> 30
                 , s_1(40) -> 34
                 , s_1(40) -> 49
                 , s_1(40) -> 51
                 , s_1(41) -> 40
                 , s_1(42) -> 41
                 , s_1(44) -> 43
                 , s_1(49) -> 48
                 , s_1(51) -> 50
                 , p_0(2) -> 15
                 , p_0(2) -> 17
                 , p_0(2) -> 27
                 , p_0(12) -> 11
                 , p_0(16) -> 15
                 , p_0(17) -> 27
                 , p_0(18) -> 14
                 , p_0(20) -> 14
                 , p_0(20) -> 19
                 , p_0(25) -> 24
                 , p_1(31) -> 30
                 , p_1(32) -> 31
                 , p_1(33) -> 30
                 , p_1(36) -> 35
                 , p_1(38) -> 35
                 , p_1(38) -> 37
                 , p_1(38) -> 45
                 , p_1(43) -> 42
                 , p_1(46) -> 45
                 , p_1(47) -> 46
                 , p_1(48) -> 14
                 , p_1(48) -> 30
                 , p_1(48) -> 34
                 , p_1(50) -> 14
                 , p_1(50) -> 30
                 , p_1(50) -> 34
                 , p_1(50) -> 49
                 , b_0(27) -> 24
                 , b_0(27) -> 26
                 , b_1(45) -> 42
                 , b_1(45) -> 44
                 , c_0(15) -> 14
                 , c_1(35) -> 30
                 , c_1(35) -> 34
                 , p^#_0(2) -> 8
                 , p^#_0(11) -> 10
                 , p^#_1(31) -> 39
                 , b^#_0(2) -> 9
                 , c_1_0(10) -> 9
                 , c_1_1(39) -> 9}
      
   6) {c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))}
      
      The usable rules for this path are the following:
      {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
       , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
               , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
               , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
               , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [2]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))}
            and weakly orienting the rules
            {  a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [7]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [3]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [12]
                  a^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))
                 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
                 , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , c^#(s(x1)) -> c_2(p^#(s(p(s(a(p(s(p(s(x1))))))))))
                   , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
                   , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a_0(17) -> 14
                 , a_0(17) -> 16
                 , a_1(33) -> 28
                 , a_1(33) -> 32
                 , a_1(33) -> 39
                 , a_1(33) -> 41
                 , s_0(2) -> 2
                 , s_0(2) -> 17
                 , s_0(2) -> 19
                 , s_0(2) -> 25
                 , s_0(2) -> 33
                 , s_0(2) -> 35
                 , s_0(2) -> 47
                 , s_0(14) -> 13
                 , s_0(16) -> 15
                 , s_0(19) -> 18
                 , s_0(20) -> 14
                 , s_0(20) -> 16
                 , s_0(21) -> 20
                 , s_0(22) -> 21
                 , s_0(24) -> 23
                 , s_1(2) -> 36
                 , s_1(2) -> 48
                 , s_1(26) -> 22
                 , s_1(26) -> 24
                 , s_1(26) -> 44
                 , s_1(26) -> 46
                 , s_1(27) -> 26
                 , s_1(28) -> 27
                 , s_1(31) -> 30
                 , s_1(32) -> 29
                 , s_1(32) -> 31
                 , s_1(35) -> 34
                 , s_1(36) -> 49
                 , s_1(39) -> 38
                 , s_1(41) -> 40
                 , s_1(42) -> 14
                 , s_1(42) -> 16
                 , s_1(42) -> 28
                 , s_1(42) -> 32
                 , s_1(42) -> 39
                 , s_1(42) -> 41
                 , s_1(43) -> 42
                 , s_1(44) -> 43
                 , s_1(46) -> 45
                 , p_0(2) -> 17
                 , p_0(2) -> 19
                 , p_0(2) -> 25
                 , p_0(15) -> 14
                 , p_0(18) -> 17
                 , p_0(19) -> 25
                 , p_0(23) -> 22
                 , p_1(29) -> 28
                 , p_1(30) -> 29
                 , p_1(31) -> 28
                 , p_1(34) -> 33
                 , p_1(36) -> 33
                 , p_1(36) -> 35
                 , p_1(36) -> 47
                 , p_1(38) -> 28
                 , p_1(38) -> 32
                 , p_1(40) -> 28
                 , p_1(40) -> 32
                 , p_1(40) -> 39
                 , p_1(45) -> 44
                 , p_1(48) -> 47
                 , p_1(49) -> 48
                 , b_0(25) -> 22
                 , b_0(25) -> 24
                 , b_1(47) -> 44
                 , b_1(47) -> 46
                 , c_1(33) -> 28
                 , c_1(33) -> 32
                 , p^#_0(2) -> 8
                 , p^#_0(13) -> 12
                 , p^#_1(38) -> 37
                 , c^#_0(2) -> 11
                 , c_2_0(12) -> 11
                 , c_2_1(37) -> 11}
      
   7) {  a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))
       , p^#(s(x1)) -> c_4()}
      
      The usable rules for this path are the following:
      {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
       , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
               , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
               , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))
               , p^#(s(x1)) -> c_4()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , p^#(s(x1)) -> c_4()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
               , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
               , p^#(s(x1)) -> c_4()}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [8]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [2]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))}
            and weakly orienting the rules
            {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , p^#(s(x1)) -> c_4()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [8]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [3]
                  c(x1) = [1] x1 + [1]
                  a^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))
             , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
             , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
             , p^#(s(x1)) -> c_4()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [14]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [6]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [12]
                  c_0(x1) = [1] x1 + [1]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))
                 , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
                 , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
                 , p^#(s(x1)) -> c_4()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))
                   , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
                   , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
                   , p^#(s(x1)) -> c_4()}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a_1(27) -> 16
                 , a_1(27) -> 20
                 , a_1(27) -> 24
                 , a_1(27) -> 26
                 , a_1(27) -> 39
                 , a_1(27) -> 43
                 , s_0(2) -> 2
                 , s_0(2) -> 12
                 , s_0(2) -> 13
                 , s_0(2) -> 21
                 , s_0(2) -> 27
                 , s_0(2) -> 29
                 , s_0(2) -> 34
                 , s_0(11) -> 10
                 , s_0(13) -> 22
                 , s_0(14) -> 11
                 , s_0(15) -> 14
                 , s_0(16) -> 15
                 , s_0(19) -> 18
                 , s_0(20) -> 17
                 , s_0(20) -> 19
                 , s_1(2) -> 30
                 , s_1(2) -> 35
                 , s_1(24) -> 23
                 , s_1(26) -> 25
                 , s_1(29) -> 28
                 , s_1(30) -> 36
                 , s_1(33) -> 32
                 , s_1(37) -> 11
                 , s_1(37) -> 33
                 , s_1(37) -> 46
                 , s_1(38) -> 37
                 , s_1(39) -> 38
                 , s_1(42) -> 41
                 , s_1(43) -> 40
                 , s_1(43) -> 42
                 , s_1(44) -> 16
                 , s_1(44) -> 20
                 , s_1(44) -> 24
                 , s_1(44) -> 26
                 , s_1(44) -> 39
                 , s_1(44) -> 43
                 , s_1(45) -> 44
                 , s_1(46) -> 45
                 , p_0(2) -> 12
                 , p_0(2) -> 13
                 , p_0(2) -> 21
                 , p_0(13) -> 12
                 , p_0(17) -> 16
                 , p_0(18) -> 17
                 , p_0(19) -> 16
                 , p_0(22) -> 21
                 , p_1(23) -> 16
                 , p_1(23) -> 20
                 , p_1(23) -> 39
                 , p_1(23) -> 43
                 , p_1(25) -> 16
                 , p_1(25) -> 20
                 , p_1(25) -> 24
                 , p_1(25) -> 39
                 , p_1(25) -> 43
                 , p_1(28) -> 27
                 , p_1(30) -> 27
                 , p_1(30) -> 29
                 , p_1(30) -> 34
                 , p_1(32) -> 46
                 , p_1(35) -> 34
                 , p_1(36) -> 35
                 , p_1(40) -> 39
                 , p_1(41) -> 40
                 , p_1(42) -> 39
                 , b_0(12) -> 11
                 , b_1(34) -> 33
                 , b_1(34) -> 46
                 , c_0(21) -> 16
                 , c_0(21) -> 20
                 , c_1(27) -> 39
                 , c_1(27) -> 43
                 , a^#_0(2) -> 6
                 , c_0_0(9) -> 6
                 , c_0_1(31) -> 6
                 , p^#_0(2) -> 8
                 , p^#_0(10) -> 9
                 , p^#_1(32) -> 31
                 , c_4_0() -> 8
                 , c_4_0() -> 9
                 , c_4_1() -> 31}
      
   8) {a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))}
      
      The usable rules for this path are the following:
      {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
       , p(p(s(x1))) -> p(x1)
       , p(s(x1)) -> x1
       , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
       , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
               , p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1
               , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
               , a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))
               , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
             , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
               , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
            and weakly orienting the rules
            {  b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
             , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [8]
                  c(x1) = [1] x1 + [1]
                  a^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [1]
                  p^#(x1) = [1] x1 + [0]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  p(p(s(x1))) -> p(x1)
             , p(s(x1)) -> x1}
            and weakly orienting the rules
            {  c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
             , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
             , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(p(s(x1))) -> p(x1)
               , p(s(x1)) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [10]
                  c(x1) = [1] x1 + [6]
                  a^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [1]
                  p^#(x1) = [1] x1 + [2]
                  b^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
              Weak Rules:
                {  p(p(s(x1))) -> p(x1)
                 , p(s(x1)) -> x1
                 , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
                 , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
                 , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {a(s(x1)) -> s(s(s(p(s(b(p(p(s(s(x1))))))))))}
                Weak Rules:
                  {  p(p(s(x1))) -> p(x1)
                   , p(s(x1)) -> x1
                   , c(s(x1)) -> p(s(p(s(a(p(s(p(s(x1)))))))))
                   , b(s(x1)) -> s(s(s(p(p(s(s(c(p(s(p(s(x1))))))))))))
                   , a^#(s(x1)) -> c_0(p^#(s(b(p(p(s(s(x1))))))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a_0(21) -> 16
                 , a_0(21) -> 20
                 , a_0(21) -> 24
                 , a_1(38) -> 16
                 , a_1(38) -> 20
                 , a_1(38) -> 35
                 , a_1(38) -> 37
                 , a_1(38) -> 42
                 , a_1(38) -> 46
                 , s_0(2) -> 2
                 , s_0(2) -> 12
                 , s_0(2) -> 13
                 , s_0(2) -> 21
                 , s_0(2) -> 30
                 , s_0(2) -> 38
                 , s_0(11) -> 10
                 , s_0(13) -> 22
                 , s_0(14) -> 11
                 , s_0(15) -> 14
                 , s_0(16) -> 15
                 , s_0(19) -> 18
                 , s_0(20) -> 17
                 , s_0(20) -> 19
                 , s_0(24) -> 23
                 , s_1(2) -> 31
                 , s_1(2) -> 33
                 , s_1(25) -> 16
                 , s_1(25) -> 20
                 , s_1(25) -> 24
                 , s_1(25) -> 35
                 , s_1(25) -> 37
                 , s_1(25) -> 42
                 , s_1(25) -> 46
                 , s_1(26) -> 25
                 , s_1(27) -> 26
                 , s_1(29) -> 28
                 , s_1(30) -> 39
                 , s_1(33) -> 32
                 , s_1(35) -> 34
                 , s_1(37) -> 36
                 , s_1(40) -> 11
                 , s_1(40) -> 27
                 , s_1(40) -> 29
                 , s_1(41) -> 40
                 , s_1(42) -> 41
                 , s_1(45) -> 44
                 , s_1(46) -> 43
                 , s_1(46) -> 45
                 , p_0(2) -> 12
                 , p_0(2) -> 13
                 , p_0(2) -> 21
                 , p_0(13) -> 12
                 , p_0(17) -> 16
                 , p_0(18) -> 17
                 , p_0(19) -> 16
                 , p_0(19) -> 20
                 , p_0(22) -> 21
                 , p_0(23) -> 16
                 , p_0(23) -> 20
                 , p_1(28) -> 27
                 , p_1(31) -> 30
                 , p_1(31) -> 38
                 , p_1(32) -> 31
                 , p_1(33) -> 30
                 , p_1(33) -> 38
                 , p_1(34) -> 16
                 , p_1(34) -> 20
                 , p_1(34) -> 42
                 , p_1(34) -> 46
                 , p_1(36) -> 16
                 , p_1(36) -> 20
                 , p_1(36) -> 35
                 , p_1(36) -> 42
                 , p_1(36) -> 46
                 , p_1(39) -> 38
                 , p_1(41) -> 42
                 , p_1(41) -> 46
                 , p_1(43) -> 42
                 , p_1(43) -> 46
                 , p_1(44) -> 43
                 , p_1(45) -> 42
                 , p_1(45) -> 46
                 , b_0(12) -> 11
                 , b_1(30) -> 27
                 , b_1(30) -> 29
                 , c_0(21) -> 16
                 , c_0(21) -> 20
                 , c_1(38) -> 42
                 , c_1(38) -> 46
                 , a^#_0(2) -> 6
                 , c_0_0(9) -> 6
                 , c_0_1(47) -> 6
                 , p^#_0(2) -> 8
                 , p^#_0(10) -> 9
                 , p^#_1(28) -> 47}